
Polymorphic Management

12-10 COOL User’s Manual

The preprocessor expands the macros and generates the following:

 1 class foo :public Generic{

 2 private:

 3 int* data; // Pointer to allocated storage

 4 char *a, *b, c; // Three miscellaneous variables

 5 int size; // Size of foo object

 6 void grow (int new_size); // Private function to grow foo

 7 public:

 8 foo (int); // Constructor with size

 9 ~foo (); // Destructor

10 int& operator[] (int); // Operator[] overload for Type

11 Boolean find (const int&); // Find element in foo

12 const int*& get_data() { return data }

13 const char*& get_a() { return a }

14 const char*& get_b() { return b }

15 const char*& get_c() { return c }

16 const int& get_size() { return size }

17 };

Lines 1 through 11 are the same as before entering the preprocessor and contain the
class definition as specified by the programmer. Lines 12 through 16 contain inline ac-
cessor member functions generated by the macros specified. These were added inline as
a result of the inside specifier on the classmac macro directive for generate_slot_ac-
cessors.

Polymorphic Management

12-9COOL User’s Manual

Class Macro 12.8 The following example shows a mechanism to automatically generate a

Example member function accessor for each private data member in a class. This is performed for

any class that inherits from Generic in its inheritance tree and in an environment where
the classmac data member hook macro shown has been defined. This operation is not
performed by default for COOL, but rather requires explicit programmer action. The
following lines contain several macros and a skeleton class definition to pass through
the preprocessor:

 1 #pragma defmacro classmac ”classmac” delimiter=)

 2 classmac (generate_slot_accessors, inside, slots=slot_accessor)

 3 MACRO generate_slot_accessors (class_name, base_class, BODY: methods) {

 4 methods }

 5 MACRO slot_accessor (type, name, value) {

 6 const type& get_##name() { return name }

 7 }

 8 class foo: public Generic {

 9 private:

10 int* data; // Pointer to allocated storage

11 char *a, *b, c; // Three miscellaneous variables

12 int size; // Size of foo object

13 void grow (int new_size); // Private function to grow foo

14 public:

15 foo (int); // Constructor with size

16 ~foo (); // Destructor

17 int& operator[] (int); // Operator[] overload for Type

18 Boolean find (const int&); // Find element in foo

19 };

Line 1 instructs the preprocessor to recognize the COOL macro classmac and to call the
internal preprocessor macro classmac. The terminating delimiter of this macro is a clos-
ing parentheses, which means that all input from the classmac keyword up to and in-
cluding a matched, right parenthesis will be passed to and processed by the macro. Line
2 tells the classmac macro to call the generate_slot_accessors macro for each data
member in the class definition and place the expanded macro results inside the defini-
tion. Note the slots=slot_accessor argument that ensures that each data member will
be processed by the named macro passed through the BODY: argument.

Lines 3 and 4 define the generate_slot_accessors macro. classmac passes this macro
the class name, the base class name, and the BODY: argument slot_accessor as speci-
fied by the slots option on line 2. Lines 5 through 7 define a macro slot_accessor of
type (Symbol*, Symbol*, char*) where the first argument is a symbol representing the
type, the second argument is a symbol representing the name, and the third argument is a
character string of the arguments or initial values. These arguments and their order are
always passed by the classmac macro to all data member and member function macros
specified by the user. Line 6 contains the line of code that gets generated for the accessor
function with argument names substituted appropriately. Lines 8 through 19 declare a
simple class with several data members.

Polymorphic Management

12-8 COOL User’s Manual

args One or more of the following comma-separated arguments:

arg = macro_name

Calls macro_name on the preceding type of argument

inside
Expands the macro inside the class definition

outside
Expands the macro outside the class definition

slots
Evaluates the macro for data members in the class

methods
Evaluates the macro for member functions in the class

virtual
Evaluates the macro for virtual member functions only

inline
Evaluates the macro for inline member functions only

normal
Evaluates the macro for non-inline, non-virtual member functions
only

private
Evaluates the macro for private data members or private member
functions only

protected
Evaluates the macro for protected data or protected member functions
only

public
Evaluates the macro for public data or public member functions only

The arg=macro_name option allows the programmer to specify the name of a macro to
call on arguments of the preceding type. This is typically used to specify the name of the
macro to call for either the data members or member functions, as in the following ex-
ample. If neither the inside nor outside arguments are specified, the macro will be ex-
panded outside and after the class definition. Either the slots or methods keyword must
be specified, but not both. If neither the virtual, inline, nor normal keywords are speci-
fied, all member functions in the class are used. If neither the private, protected, nor
public keywords are specified, all data members and member functions in the class are
used.

Polymorphic Management

12-7COOL User’s Manual

Lines 31 through 41 constitute the main body of the program. Line 32 declares a String
object and initializes it with a character string value. Lines 33 through 36 declare a
Date_Time object whose value is set to the local system time formatted for Sweden in
Western European Time. Line 37 declares an instance of my_class with an integral
value of three. Line 38 declares an instance of the list of pointers to a generic object with
three values, the address of the string, date/time, and my_class objects. Line 39 calls the
process_list function to output the types and values of the objects in the list. Finally,
line 41 ends the program with a valid exit code.

The output of this program is shown below:

 1 Item is a ‘String’ and its value is: This is a string object

 2 Item is a ‘Date_Time’ and its value is: Sweden 1986–15–10 17.44.00 WET

 3 Item is a ‘my_class’ and its value is: 3

As can be seen from the preceding output, this program was successful in querying each
object in the list for its type, printing the name of that type, and outputting the value to
the standard output stream. Line 1 shows the type and value of the String object, line 2
shows the type and value of the Date_Time object, and line 3 shows the type and value
of the application-specific object.

Class Macro 12.7 The class keyword is implemented as a COOL macro to add symbolic comput-

ing abilities to class definitions. It takes a standard C++ class definition and, if the class
contains Generic somewhere in its inheritance hierarchy, it generates member func-
tions for support of run time type checking and query. In addition, a symbol for the
derived Generic class type is added to the COOL global symbol package SYM. The class
macro also has two hooks, allowing a programmer to customize the results. The actual
code, which is expanded in a class definition and after a class definition, is controlled by
the classmac macro that class calls.

The classmac macro allows data member and member function hooks to be specified by
user-defined macros. There may be more than one classmac macro hook specified by
the programmer. COOL has several, and other user-defined macros are simply chained
together in a calling sequence ordered according to order of definition. Each classmac
macro defines how the class macro should expand the class definition. The class macro
does not actually generate the code itself. This is defined in user-modifiable header files
that specify a classmac macro. For example, a general-purpose mechanism that auto-
matically creates accessor member functions to get and set each data member can be
created by defining a classmac macro that is attached to the data member hook of the
class macro (see the following example). No changes to the COOL preprocessor are
required.

A user-defined combination of data members and member functions of a class defini-
tion are passed as arguments to macros that can be changed or customized by the appli-
cation programmer. The virtual map_over_slots member function takes a pointer to a
function as one of its arguments. Each data member selected is passed to this procedure,
providing the customization point for the user. The COOL Generic class uses the data
member hook to implement the map_over_slots member function.

Name: classmac — User-definable class macro

Synopsis: classmac (name, REST: args);

name Name of macro to call

Polymorphic Management

12-6 COOL User’s Manual

 1 #include <COOL/String.h> // COOL String class

 2 #include <COOL/Date_Time.h> // COOL DateTime class

 3 #include <COOL/List.h> // COOL List class

 4 DECLARE List<Generic*>; // Define list of Generic*

 5 IMPLEMENT List<Generic*>; // Implement list of Generic*

 6 class my_class : public Generic {

 7 private:

 8 int i;

 9 public:

10 my_class (int value) {

11 this–>i = value;

12 }

13 int& get() {

14 return this–>i;

15 }

16 friend ostream& operator<< (ostream& os, my_class* m) {

17 os << m–>get();

18 return os;

19 }

20 friend ostream& operator<< (ostream& os, my_class& m) {

21 os << m.get();

22 return os;

23 }

24 };

25 void process_list (List<Generic*>& g) {

26 for (g.reset(); g.next();) {

27 cout << ”Item is a ‘” << ((g.value())–>type_of())–>name() << ”’ ”;

28 cout << ”and its value is: ” << g.value() << ”\n”;

29 }

30 }

31 int main () {

32 String s1 (”This is a string object”); // Initialize string object

33 set_default_country(SWEDEN); // Set Sweden country code

34 set_default_time_zone(WET); // Western Europe time zone

35 Date_Time d1; // Declare DateTime object

36 d1.parse(”5:44pm 86–10–15”); // Parse a date/time string

37 my_class m1(3); // Initialize my_class object

38 List<Generic*> lg (3, &s1, &d1, &m1); // List with 3 generic objects

39 process_list (lg); // Iterate through list

40 return 0; // Exit with valid return code

41 }

Lines 1-3 include three COOL classes, and lines 4 and 5 implement a list of pointers to
generic objects. Lines 6-24 declare and implement a new simple class my_class, de-
rived from the Generic class. Lines 25-30 are the heart of this polymorphic example. A
function, process_list, is declared that takes one argument, a reference to a list of
pointers to generic objects. Lines 26-29 implement a loop using the current position
iterator built into the COOL List<Type> class to access all elements of the list. Line 27
uses the type_of member function to return a pointer to the Symbol object representing
the type of the value of the object at the current position in the list. The name function of
Symbol is used to return the name so it can be printed. Line 28 outputs the value of the
object at the current position in the list.

Polymorphic Management

12-5COOL User’s Manual

TYPE_CASE 12.5 Type determination and function dispatch can become quite tedious if

Macro there are many types of objects. Ideally, each would be derived from a common base

and include a virtual member function for each important operation that might be re-
quired. However, it is sometimes not feasible to have such a situation, especially with a
high number of objects or member functions. The TYPE_CASE macro provides an
alternate scheme to do this.

The following code fragment shows an abbreviated function that takes a single argu-
ment of a pointer to a Generic object. This function uses the TYPE_CASE statement to
dispatch some particular member function call based upon the type of the object. This
might be useful in a situation where every object that inherits from Generic does not
implement the same functions, but rather has a specialized subset appropriate for that
object only. For example, foo might want to modify the elements of the COOL Vector
and List classes in a different manner.

 1 void foo (Generic* g) {

 2 TYPE_CASE (g) {

 3 case Vector: // If the object is a vector

 4 // Do something for Vector

 5 break;

 6 case List: // If the object is a list

 7 // Do something for List

 8 break;
 9 default: // Else do the rest

10 }
11 cout << ”Object is a ” << g–>type_of(); // Output type

12 }

Lines 1 through 12 implement the same operation as the previous example but this time
use the TYPE_CASE macro instead of is_type_of and type_of. Line 2 begins a macro
analogous to the C++ switch statement. It gathers all possible cases and allows the user
to symbolically dispatch on the type of object represented by the case statements. This
automates some of the symbol collection and manipulation required with the earlier ex-
ample. Yet another variation is discussed later using hooks available to the programmer
with the class macro.

Heterogeneous 12.6 As a final example, the polymorphic capabilities available with Generic

Container and its associated functions and macros can implement heterogeneous con-

Example tainer classes. A heterogeneous container class can contain many types of objects. For

example, the graphics editor mentioned earlier might store all instances of graphic ob-
jects in a list, regardless of whether they are circles, squares, or dodecahedrons. The
example below creates a list of pointers to Generic objects and uses the virtual member
functions associated with both the derived classes and the COOL Symbol class to ac-
complish what would otherwise be a relatively difficult task:

Polymorphic Management

12-4 COOL User’s Manual

Run Time Type 12.4 One of the simplest and most useful features facilitated by Generic

Checking Example is the run-time type checking capability. The type_of and is_type_of virtual member

functions accomplish this. The following code fragment provides an example of the
kind of run time type query available for an object that is derived at some point from the
COOL Generic class. A more complete example is in the discussion on heterogeneous
container classes.

The parameterized Vector<Type> class is derived from the type-independent Vector
class, which is in turn derived from Generic. Similarly, the List<Type> class is derived
from List, which is derived from Generic. Suppose a general-purpose function in an
application is written that at some point needs to determine the type of the object being
manipulated and respond appropriately. If there are many possibilities, the
TYPE_CASE macro discussed later might be appropriate. If there are few, the follow-
ing mechanism can be used:

 1 void foo (Generic* g) {

 2 // Some processing

 3 if (g–>is_type_of(SYM(Vector))) // If derived from Vector

 4 // Go do something

 5 else if (g–>is_type_of(SYM(List))) // Else if from List

 6 // Go do something

 7 else { // Else something else

 8 // Do something else

 9 }

10 ... // Sometime later

11 cout << ”Object is a ” << g–>type_of(); // Output type

12 }

Lines 1 through 12 contain a code fragment that queries the type of object pointed to by
a Generic* argument. Lines 3 and 5 are similar and use the virtual is_type_of member
function that takes a Symbol as an argument to determine if the object is an instance of a
class or is derived at some point from that class. Note that since Vector<Type> is de-
rived from the Vector class, the application merely queries to see if this object is of type
Vector, not of Vector<int>. The more specified version could also be used as the sym-
bol representing the class. Presumably, the programmer will perform some type-spe-
cific operation on lines 4 and 6 as appropriate. If the object is neither a vector or a list,
some default action is performed. Similarly, line 11 uses the type_of member function
and the overloaded output operator to send the class type name of the object (that is, the
symbol name for the class) to the standard output stream. In all cases, the function bind-
ings for theses operations are determined at run time, not compile time.

Polymorphic Management

12-3COOL User’s Manual

virtual Symbol** type_list() const;
Returns a NULL-terminated array whose first element is a pointer to a symbol rep-
resenting the type of object. The remaining elements of the array are pointers to the
symbol type lists of the base classes.

Member Functions virtual void describe (ostream& os);
Uses the map_over_slots member function to display the data members and their
types of the object on the specified stream os.

Boolean is_type_of (Symbol* sym) const;
Type checking predicate that returns TRUE if the object is of type sym or inherits
from that type somewhere in the class hierarchy; otherwise, this predicate returns
FALSE.

virtual Boolean map_over_slots (Slot_Mapper sm, void* rock=NULL);
Calls the mapping function sm on every data member in the object and returns
TRUE if all calls return TRUE; otherwise, this function returns FALSE. The rock

argument is a pointer to some arbitrary piece of data for optional use by the mapper
function. sn is a function of type Boolean (Slot_Mapper)(Generic*, char*, void*,
Symbol*, void*), where Generic* is a pointer to the object, char* is a character
string representation of the data member name, void* is a pointer to the data mem-
ber value, Symbol* is a symbol table entry for the data member type, and void* is
the miscellaneous programmer-defined optional data value.

inline Symbol* type_of () const;
Returns a pointer to the type symbol associated with an object.

Friend Functions: Boolean compare_types (Symbol** type_list, Symbol* sym);
Searches type_list for sym and returns TRUE if found; otherwise, this function re-
turns FALSE. This function is used by the is_type_of member function.

int compare_multiple_types (Symbol** sym_list1, Symbol** sym_list2);
Searches sym_list1 for any symbol match against sym_list2 and returns TRUE if
found; otherwise, this function returns FALSE. This function is used by the se-
lect_type_of member function.

friend ostream& operator<< (ostream& os, const Generic& g);
Overloads the output operator for a reference to a generic object and calls the pro-
tected virtual print member function to provide a default output capability for all
classes derived from Generic.

friend ostream& operator<< (ostream& os, const Generic* g);
Overloads the output operator for a pointer to a generic object and calls the pro-
tected virtual print member function to provide a default output capability for all
classes derived from Generic.

Polymorphic Management

12-2 COOL User’s Manual

Generic Class 12.3 The Generic class is inherited by most other COOL classes and manipulates lists

of symbols to manage type information. Generic adds to any derived class run-time
type checking and object queries, formatted print capabilities, and a describe mecha-
nism. The COOL class macro (discussed in paragraph 12.7) automatically generates the
necessary implementation code for these member functions in the derived classes. A
significant benefit of this common base class is the ability to declare heterogeneous con-
tainer classes parameterized over the Generic* type. These classes, combined with the
current position and parameterized iterator class, allow the programmer to manipulate
collections of objects of different types in a simple, efficient manner.

The member functions added by Generic and the class macro to derived COOL classes
manipulate symbols stored in the global SYM package. These symbols reflect the in-
heritance tree for a specific class. They may have optional property lists containing in-
formation that associates supported member functions with their respective argument
lists. User-defined classes derived from Generic are also automatically supported in an
identical fashion, resulting in additional symbols in the global symbol package. As dis-
cussed earlier, these symbols must have storage allocated for them and code to initialize
the package at program startup time. This is managed by the COOL file symbols.C that
should be compiled and linked with every application that uses COOL. An automated
method for ensuring correct package setup and symbol initialization is shown in the
make files associated with the example programs for this manual.

NOTE: All applications using COOL must have a copy of symbols.C linked into the
final executable program. See the make file in the ~COOL/examples subdirectory for a
mechanism to automate this procedure.

Name: Generic — Base class supporting run time object typing and query

Synopsis: #include <COOL/Generic.h>

Base Classes: None

Friend Classes: None

Protected
Constructors: Generic ();

There are no public constructors for a Generic object. You can only create a pointer
to a Generic object. Since Generic has no private or public data (as a pure virtual
base class), it is actually used as an implementation requirements guide for derived
classes.

Protected
Member Functions: virtual void print (ostream& os) const;

Utility member function used by the overloaded output operator to provide a de-
fault print capability for all classes derived from Generic. This intermediate func-
tion is required since friend functions cannot be virtual.

int select_type_of (const Symbol** sym_list) const;
Supports an efficient type-case macro (discusses later) by examining the NULL-
terminated sym_list of symbols passed as an argument (from type_list) and returns
an integer index of the matching type symbol if found; otherwise, this function re-
turns –1.

12-1COOL User’s Manual

POLYMORPHIC MANAGEMENT

Introduction 12.1 The C++ language version 2.0, as specified in the AT&T language reference

manual, implements virtual member functions. This delays the binding of an object to a
specific function implementation until run time. This delayed (or dynamic) binding is
useful where the type of object might be one of several kinds, all derived from some
common base class but requiring a specialized implementation of a function. The clas-
sic example is that of a graphics editor where, given a base class graphic_object from
which square, circle, and triangle are derived, specialized virtual member functions to
calculate the area are provided. A programmer can then write a function that takes a
graphic_object argument and determines its area without knowing which of all the
possible kinds of graphical objects the argument really is.

While powerful and more flexible than most other conventional programming lan-
guages, this dynamic binding capability of C++ is still not enough. Highly dynamic lan-
guages such as SmallTalk and Lisp allow the programmer to delay almost all decisions
until run time. In addition, facilities are often present for querying an object at run time
to determine its type or to request a list of all possible member functions available.
These kinds of features are commonly used in many symbolic computing problems
tackled today.

COOL supports enhanced polymorphic management capabilities with a programmer-
selectable collection of macros, classes, symbolic constants, run time symbolic objects,
and dynamic packages. Many of these individual concepts have been discussed in previ-
ous sections. This section discusses the Generic class that – combined with macros,
symbols, and packages – provides efficient run time object type checking, object query,
and enhanced polymorphic functionality unavailable in the C++ language. In this sec-
tion, the following macros, queries, and classes are discussed:

• Generic class

• run time type checking

• TYPE_CASE macro

• heterogeneous container classes

• class macro

Requirements 12.2 This section discusses the Generic class and extended polymorphic manage-

ment facilities of COOL. It assumes that you have a working knowledge of the C++
language and have read and understood Section 10, Macros, and Section 11, Symbols
and Packages.

Printed on: Wed Apr 18 07:13:53 1990

Last saved on: Tue Apr 17 13:35:10 1990

Document: s12

For: skc

pl2ps 3.2.1 Copyright 1987 Interleaf, Inc.

